
Areal Data: Vector
Data

HES 505 Fall 2024: Session 7

Carolyn Koehn

1

Today’s Plan

3

Objectives
By the end of today, you should be able to:

Understand predicates and measures in the context of
spatial operations in sf

Define valid geometries and approaches for assessing
geometries in R

Use st_* and sf_* to evaluate attributes of geometries
and calculate measurements

4

Understanding the
language

6

Revisiting Simple Features
The sf package relies on a
simple feature data model to
represent geometries

hierarchical

standardized methods

complementary binary and
human-readable encoding

type description

POINT single point geometry

MULTIPOINT set of points

LINESTRING single linestring (two or more points
connected by straight lines)

MULTILINESTRING set of linestrings

POLYGON exterior ring with zero or more inner rings,
denoting holes

MULTIPOLYGON set of polygons

GEOMETRYCOLLECTION set of the geometries above

7

Revisiting Simple Features
You already know how to access some elements of a
simple feature

st_crs - returns the coordinate reference system

st_bbox - returns the bounding box for the simple
feature

8

Standaridized Methods
We can categorize sf operations based on what they return and/or how
many geometries they accept as input.

Output Categories

Predicates: evaluate a logical
statement asserting that a property
is TRUE

Measures: return a numeric value
with units based on the units of the
CRS

Transformations: create new
geometries based on input
geometries.

Input Geometries

Unary: operate on a single
geometry at a time (meaning that if
you have a MULTI* object the
function works on each geometry
individually)

Binary: operate on pairs of
geometries

n-ary: operate on sets of geometries

9

Valid Geometries

11

Remembering Valid Geometries
A linestring is simple if it does not intersect

library(sf)1
library(tidyverse)2
ls = st_linestring(rbind(c(0,0), c(1,1), c(2,2), c(2,1), c(3,4)))3

4
ls2 = st_linestring(rbind(c(0,0), c(1,1), c(2,2), c(0,2), c(1,1), 5

12

Remembering Valid Geometries
Valid polygons

Are closed (i.e., the last vertex equals the first)

Have holes (inner rings) that inside the the exterior
boundary

Have holes that touch the exterior at no more than one
vertex (they don’t extend across a line)

For multipolygons, adjacent polygons touch only at
points

Do not repeat their own path

13

Remembering Valid Geometries
p1 = st_as_sfc("POLYGON((0 0, 0 10, 10 0, 10 10, 0 0))")1
p2 = st_as_sfc("POLYGON((0 0, 0 10, 5 5, 0 0))")2
p3 = st_as_sfc("POLYGON((5 5, 10 10, 10 0, 5 5))")3

14

Remembering Valid Geometries
p4 = st_as_sfc(c("POLYGON((0 0, 0 10, 5 5, 0 0))", "POLYGON((5 5, 1
plot(p4, col=c("#7C4A89", "blue"))2

15

Empty Geometries
Empty geometries arise when an operation produces
NULL outcomes (like looking for the intersection between
two non-intersecting polygons)

sf allows empty geometries to make sure that
information about the data type is retained

Similar to a data.frame with no rows or a list with
NULL values

Most vector operations require simple, valid geometries

16

Predicates

18

Using Unary Predicates
Unary predicates accept single geometries (or geometry
collections)

Provide helpful ways to check whether your data is
ready to analyze

Use the st_ prefix and return TRUE/FALSE
predicate asks…

is_simple is the geometry self-intersecting (i.e., simple)?

is_valid is the geometry valid?

is_empty is the geometry column of an object empty?

is_longlat does the object have geographic coordinates? (FALSE if coords are projected, NA if no
crs)

is(geometry, class) is the geometry of a particular class?

19

Checking Geometries With Unary
Predicates

Before conducting costly analyses, it’s worth checking
for:

1. empty geometries, using any(st_is_empty(x)))

2. corrupt geometries, using any(is.na(st_is_valid(x)))

3. invalid geometries, using any(na.omit(st_is_valid(x)) == FALSE); in case of
corrupt and/or invalid geometries,

4. in case of invalid geometries, query the reason for invalidity by st_is_valid(x,
reason = TRUE)

Invalid geometries will require transformation (next
week!)

20

Checking Geometries With Unary
Predicates

st_is_simple(ls)1

[1] TRUE

st_is_simple(ls2)1

[1] FALSE

st_is_valid(p1)1

[1] FALSE

st_is_valid(p4)1

[1] TRUE TRUE

21

Unary Predicates and Real Data
library(tigris)1
id.cty <- counties2
 3
st_crs(id.cty)$inp4

[1] "NAD83"

st_is_longlat(id.c1

[1] TRUE

st_is_valid(id.cty1

[1] TRUE TRUE TRUE TRUE TRUE

all(st_is_valid(id1

[1] TRUE

22

Binary Predicates

24

Binary Predicates
Accept exactly two geometries (or collections)

Also return logical outcomes

Based on the Dimensionally Extended 9-Intersection Model (DE-9IM)

predicate meaning inverse of

contains None of the points of A are outside B within

contains_properly A contains B and B has no points in common with the boundary of A

covers No points of B lie in the exterior of A covered_by

covered_by Inverse of covers

crosses A and B have some but not all interior points in common

disjoint A and B have no points in common intersects

equals A and B are topologically equal: node order or number of nodes may differ; identical to A contains B AND
A within B

equals_exact A and B are geometrically equal, and have identical node order

intersects A and B are not disjoint disjoint

is_within_distance A is closer to B than a given distance

within None of the points of B are outside A contains

touches A and B have at least one boundary point in common, but no interior points

overlaps A and B have some points in common; the dimension of these is identical to that of A and B

relate given a mask , return whether A and B adhere to this patternpattern
25

https://en.wikipedia.org/wiki/DE-9IM

Binary Predicates
id <- states(progr1
 filter(STUSPS ==2
or <- states(progr3
 filter(STUSPS ==4
ada.cty <- id.cty 5
 filter(NAME == "6

st_covers(id, ada.cty)1

Sparse geometry binary predicate list of
length 1, where the predicate
was `covers'
 1: 1

st_covers(id, ada.cty, sparse=FALS1

 [,1]
[1,] TRUE

st_within(ada.cty, or)1

Sparse geometry binary predicate list of
length 1, where the predicate
was `within'
 1: (empty)

st_within(ada.cty, or, sparse=FALS1

 [,1]
[1,] FALSE

26

Measures

28

Measures
Unary Measures

Return quantities of individual geometries
measure returns

dimension 0 for points, 1 for linear, 2 for polygons, possibly NA for empty geometries

area the area of a geometry

length the length of a linear geometry

Unary Measures
st_area(id)1

2.15994e+11 [m^2]

st_area(id.cty[1:5,])1

Units: [m^2]
[1] 2858212132 3380630278 1459359818 1726660462 1223521586

st_dimension(id.cty[1:5,])1

[1] 2 2 2 2 2 29

Binary Measures
st_distance returns the distance between pairs of
geometries

kootenai.cty <- id.cty %>% 1
 filter(NAME == "Kootenai")2
st_distance(kootenai.cty, ada.cty)3

Units: [m]
 [,1]
[1,] 396433.8

st_distance(id.cty)[1:5, 1:5]1

Units: [m]
 [,1] [,2] [,3] [,4] [,5]
[1,] 0.0 467635.7 277227.0 132998.0 0.0
[2,] 467635.7 0.0 319706.4 656056.0 514306.9
[3,] 277227.0 319706.4 0.0 377105.4 336146.8
[4,] 132998.0 656056.0 377105.4 0.0 133045.5
[5,] 0.0 514306.9 336146.8 133045.5 0.0

30

Practice!
1. Create a vector object for Owyhee county in Idaho (hint:

use filter).

2. Owyhee county is in Idaho and borders Oregon. Which
two predicates communicate this information? Show
your code and output.

3. Print the bounding box information for Oregon and
Owyhee county. Which part of this output could clue
you in that they border each other?

If you finish early, try the challenge on the next slide!

31

Challenge
Which two counties in Idaho are furthest from each other?
You will need to use spatial measures from this class as
well as data navigation methods that you may need to look
up!

32

