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Objectives
By the end of today you should be able to:

* Create new features based on topological relationships
e Use topological subsetting to reduce features

e Use spatial joins to add attributes based on location



Revisiting Spatial
Analysis




What is spatial analysis?

“The process of examining the locations, attributes, and
relationships of features in spatial data through overlay
and other analytical techniques in order to address a
question or gain useful knowledge. Spatial analysis
extracts or creates new information from spatial data”.
— ESRI Dictionary




Workflows for spatial analysis
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http://gsp.humboldt.edu/olm/Lessons/GIS/06%20Vector%20Analysis%20Attributes/00_SpatialAnalysis.html
http://gsp.humboldt.edu/olm/Lessons/GIS/06%20Vector%20Analysis%20Attributes/00_SpatialAnalysis.html

Databases and Attributes
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Attributes: Information that further describes a
spatial feature

Attributes — predictors for analysis

Monday’s focus on thematic relations between
datasets

= Shared ‘keys’ help define linkages between
objects

Sometimes we are interested in attributes that
describe location (overlaps, contains, distance)

Sometimes we want to join based on location
rather than thematic connections

m Must have the same CRS


https://giscommons.org/data-tables-and-data-preprocessing/

Calculating New
Attributes




Attributes based on geometry and
location (measures)

o Attributes like area and length can be useful for a
number of analyses

= Estimates of ‘effort” in sampling designs
= Offsets for modeling rates (e.g., Poisson regression)

* Need to assign the result of the function to a column in
data frame (e.g., $, mutate, and summarize)

e Often useful to test before assigning
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Estimating area

e st bases area (and length) calculations on the
map units of the CRS

e the units library allows conversion into a
variety of units

nz.sf <- nz %>%
mutate (area = st area (nz
head (nz.sfSarea, 3)

Units: [m"2]

[1] 128905760439 4911565037
24588819863

nz.sfSareakm <- units::set
head (nz.sfSareakm, 3)

Units: [km"2]
[1] 12890.576 4911.565
24588.820
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Estimating Density in Polygons

e Creating new features based on the frequency
of occurrence

e (larifying graphics
e Underlies quadrat sampling for point patterns

e Two steps: count and area
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nz.df <- nz %>%

mutate (counts

area =

lengths (st intersects (., 1
st area(nz),

counts/area)
head (st drop geometry(nz.df[,7:10]))

density =




Estimating Density in Polygons
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Estimating Distance

e As a covariate
e Hor use in covariance matrices

* As a means of assigning connections in networks
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Estimating Single Point Distance

e st distance
returns distances
between all features
in X and all features
iny

¢ One-to-One
relationship requires
choosing a single
point for y
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Estimating Single Point Distance

* Subsetting y into a single feature

canterbury = nz $>% filter (Name == "Canterbury")
canterbury height = nz height[canterbury, ]
co = filter(nz, grepl ("Canter|Otag", Name))

st distance(nz height[1:3, ], co)

Units: [m]

[,1] [,2]
[1,] 123537.10c 15497.72
[2, ] 94282.77 0.00

[3,] 93018.56 0.00
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ua <- urban areas(cb = FALSE, progress baf
filter (., UATYP1O == "U") %>%
filter(., str detect (NAME1O, "ID")) %>%
st transform(., crs=2163)

#get index of nearest ID city

nearest <- st nearest feature (ua)
#festimate distance

(dist = st distance (ua, ual[nearest,], by




Topological
Subsetting




Topological Subsetting

e Topological relations describe the spatial relationships between objects

e We can use the overlap (or not) of vector data to subset the data based on topology

e Need valid geometries

e Hasiest way is to use [ notation, but also most restrictive

ctby height <- nz height[canterbury, ]
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Topological Subsetting

e Lots of verbs in sf for doing this (e.g.,

st _intersects, st contains,
st TKNJChES) [ st intersects(nz height, co,

Using sparse=TRUE

sparse = TRUE) [1:3]

e see ?geos_binary_ pred for a full list (111

e Creates an implicit attribute (the sLaEeget (U)

records in x that are “in” y) [[2]

lengths (st intersects (nz height,

CO, sparse =

[1] FALSE TRUE TRUE



Topological Subsetting

* The sparse option controls how the results are returned

e We can then find out if one or more elements satisfies the
criteria

Using sparse=FALSE

|

st intersects(nz height, co, sparse = FALSE) [1:3,] ]

[,11  [,2]
[1,] FALSE FALSE
[2,] FALSE TRUE
[3,] FALSE TRUE

|

apply (st intersects(nz height, co, sparse = FALSE), 1,any) [1:3]

[1] FALSE TRUE TRUE
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I canterbury height3 = nz height
2 filter(st intersects(x = .,




Spatial Joins




Spatial Joins

e st package provides st_join for vectors

* Allows joins based on the predicates (st_intersects,
st _touches, st within distance, etc.)

® Default is a left join
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set.seed (2018)
(bb = st bbox(world)) # the world'

X Mexico

# > Xmi n ym j_ n Xma X - e P o — r<&~,,/\__‘,74_.;<(l'\:llorocco

-l araguay
X PolaE

#> -180.0 -89.9 180.0 —= T
random df = data.frame (
X = runif(n = 10, min
y = runif(n = 10, min
)
random points <- random
st as sf(coords = c("x",
st set crs("EPSG:4326")

1
2
3
4
5
6
7
8
9
0
1

=

random joined = st join(random pol]




Spatial Joins

Sometimes we may want to be less restrictive

Just because objects don’t touch doesn’t mean they don’t
relate to each other

Can use predicatesin st _join

Remember that default is 1eft join (so the number of
records can grow if multiple matches)
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I any(st touches(cycle hire, cycle hire osm, sparse

Iz = st join(cycle hire, cycle hire osm, st is wit

2 nrow(cycle hire)




Extending Joins




Extending Joins

e Sometimes we are interested in analyzing locations that contain the overlap between two vectors

= How much of home range a occurs on soil type b
= How much of each Census tract is contained with a service provision area?

e st_intersection, st_union, and st_difference return new geometries that we can use as
records in our spatial database

mutate(intersect_area = st aresc
dplyr::select (NAME, intersect ¢
st drop geometry ()

37°N -

nc <- mutate(nc, county area = st

# Merge by county name

84°W 82°W 80°W 78°W 76°W

nc <- merge(nc, intersect pct, by

# Calculate coverage
nc <- nc %>%

intersect pct <- st iIntersection (r

mutate (coverage = as.numeric (ir
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Extending Joins

37°N -
36°N -

35°N -
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