
Building Spatial
Databases based on

Location
HES 505 Fall 2024: Session 15

Carolyn Koehn

1

Objectives
By the end of today you should be able to:

Create new features based on topological relationships

Use topological subsetting to reduce features

Use spatial joins to add attributes based on location

2

Revisiting Spatial
Analysis

4

What is spatial analysis?
“The process of examining the locations, attributes, and
relationships of features in spatial data through overlay
and other analytical techniques in order to address a
question or gain useful knowledge. Spatial analysis
extracts or creates new information from spatial data”.
— ESRI Dictionary

5

Workflows for spatial analysis
Align processing with objectives

Imagining the visualizations and
analysis clarifies file formats and
variables

Helps build reproducibility

courtesy of Humboldt State
University

6

http://gsp.humboldt.edu/olm/Lessons/GIS/06%20Vector%20Analysis%20Attributes/00_SpatialAnalysis.html
http://gsp.humboldt.edu/olm/Lessons/GIS/06%20Vector%20Analysis%20Attributes/00_SpatialAnalysis.html

Databases and Attributes
Attributes: Information that further describes a
spatial feature

Attributes → predictors for analysis

Monday’s focus on thematic relations between
datasets

Shared ‘keys’ help define linkages between
objects

Sometimes we are interested in attributes that
describe location (overlaps, contains, distance)

Sometimes we want to join based on location
rather than thematic connections

Must have the same CRS

courtesy of Giscommons

7

https://giscommons.org/data-tables-and-data-preprocessing/

Calculating New
Attributes

9

Attributes based on geometry and
location (measures)

Attributes like area and length can be useful for a
number of analyses

Estimates of ‘effort’ in sampling designs

Offsets for modeling rates (e.g., Poisson regression)

Need to assign the result of the function to a column in
data frame (e.g., $, mutate, and summarize)

Often useful to test before assigning

10

Estimating area
sf bases area (and length) calculations on the
map units of the CRS

the units library allows conversion into a
variety of units

nz.sf <- nz %>% 1
 mutate(area = st_area(nz2
head(nz.sf$area, 3)3

Units: [m^2]
[1] 12890576439 4911565037
24588819863

nz.sf$areakm <- units::set1
head(nz.sf$areakm, 3)2

Units: [km^2]
[1] 12890.576 4911.565
24588.820

11

Estimating Density in Polygons
Creating new features based on the frequency
of occurrence

Clarifying graphics

Underlies quadrat sampling for point patterns

Two steps: count and area

12

Estimating Density in Polygons
nz.df <- nz %>% 1
mutate(counts = lengths(st_intersects(., r2
 area = st_area(nz),3
 density = counts/area)4
head(st_drop_geometry(nz.df[,7:10]))5

 counts area
density
1 24 12890576439 [m^2] 1.861825e-09
[1/m^2]
2 7 4911565037 [m^2] 1.425208e-09
[1/m^2]
3 42 24588819863 [m^2] 1.708093e-09
[1/m^2]
4 25 12271015945 [m^2] 2.037321e-09
[1/m^2]
5 10 8364554416 [m^2] 1.195521e-09
[1/m^2]
6 14 14242517871 [m^2] 9.829723e-10
[1/m^2]

13

Estimating Density in Polygons

14

Estimating Distance
As a covariate

For use in covariance matrices

As a means of assigning connections in networks

15

Estimating Single Point Distance
st_distance
returns distances
between all features
in x and all features
in y

One-to-One
relationship requires
choosing a single
point for y

16

Estimating Single Point Distance
Subsetting y into a single feature
canterbury = nz %>% filter(Name == "Canterbury")1
canterbury_height = nz_height[canterbury,]2
co = filter(nz, grepl("Canter|Otag", Name))3
st_distance(nz_height[1:3,], co)4

Units: [m]
 [,1] [,2]
[1,] 123537.16 15497.72
[2,] 94282.77 0.00
[3,] 93018.56 0.00

17

Estimating Single Point Distance
Using nearest neighbor distances
ua <- urban_areas(cb = FALSE, progress_bar1
 filter(., UATYP10 == "U") %>% 2
 filter(., str_detect(NAME10, "ID")) %>% 3
 st_transform(., crs=2163)4

5
#get index of nearest ID city6
nearest <- st_nearest_feature(ua)7
#estimate distance8
(dist = st_distance(ua, ua[nearest,], by_e9

Units: [m]
[1] 61373.575 61373.575 1647.128
1647.128 136917.546 136917.546

18

Topological
Subsetting

20

Topological Subsetting
Topological relations describe the spatial relationships between objects

We can use the overlap (or not) of vector data to subset the data based on topology

Need valid geometries

Easiest way is to use [notation, but also most restrictive

ctby_height <- nz_height[canterbury,]1

21

Topological Subsetting
Lots of verbs in sf for doing this (e.g.,
st_intersects, st_contains,
st_touches)

see ?geos_binary_pred for a full list

Creates an implicit attribute (the
records in x that are “in” y)

Using sparse=TRUE
st_intersects(nz_height, co, 1
 sparse = TRUE)[1:3] 2

[[1]]
integer(0)

[[2]]
[1] 2

[[3]]
[1] 2

lengths(st_intersects(nz_height, 1
 co, sparse =2

[1] FALSE TRUE TRUE

22

Topological Subsetting
The sparse option controls how the results are returned

We can then find out if one or more elements satisfies the
criteria

Using sparse=FALSE
st_intersects(nz_height, co, sparse = FALSE)[1:3,] 1

 [,1] [,2]
[1,] FALSE FALSE
[2,] FALSE TRUE
[3,] FALSE TRUE

apply(st_intersects(nz_height, co, sparse = FALSE), 1,any)[1:3]1

[1] FALSE TRUE TRUE

23

Topological Subsetting
canterbury_height3 = nz_height %>%1
 filter(st_intersects(x = ., y = canterbu2

24

Spatial Joins

26

Spatial Joins
sf package provides st_join for vectors

Allows joins based on the predicates (st_intersects,
st_touches, st_within_distance, etc.)

Default is a left join

27

Spatial Joins
set.seed(2018)1
(bb = st_bbox(world)) # the world'2

 xmin ymin xmax
ymax
-180.00000 -89.90000 179.99999
83.64513

#> xmin ymin xmax ymax 1
#> -180.0 -89.9 180.0 83.62
random_df = data.frame(3
 x = runif(n = 10, min = bb[1], m4
 y = runif(n = 10, min = bb[2], m5
)6
random_points <- random_df %>% 7
 st_as_sf(coords = c("x", "y")) %8
 st_set_crs("EPSG:4326") # set ge9

10
random_joined = st_join(random_poi11

28

Spatial Joins
Sometimes we may want to be less restrictive

Just because objects don’t touch doesn’t mean they don’t
relate to each other

Can use predicates in st_join

Remember that default is left_join (so the number of
records can grow if multiple matches)

29

Spatial Joins
any(st_touches(cycle_hire, cycle_hire_osm, sparse 1

[1] FALSE

z = st_join(cycle_hire, cycle_hire_osm, st_is_with1
nrow(cycle_hire)2

[1] 742

nrow(z)1

[1] 762

30

Extending Joins

32

Extending Joins
Sometimes we are interested in analyzing locations that contain the overlap between two vectors

How much of home range a occurs on soil type b

How much of each Census tract is contained with a service provision area?

st_intersection, st_union, and st_difference return new geometries that we can use as
records in our spatial database

intersect_pct <- st_intersection(n1
 mutate(intersect_area = st_area2
 dplyr::select(NAME, intersect_a3
 st_drop_geometry()4

5
nc <- mutate(nc, county_area = st_6

7
Merge by county name8
nc <- merge(nc, intersect_pct, by 9

10
Calculate coverage11
nc <- nc %>% 12
 mutate(coverage = as.numeric(in13

33

Extending Joins

34

