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Objectives
By the end of today you should be able to:

Distinguish deterministic and stochastic processes

Define autocorrelation and describe its estimation

Articulate the benefits and drawbacks of autocorrelation

Leverage point pa�erns and autocorrelation to
interpolate missing data
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But first…
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Pa�erns as realizations of spatial
processes

A spatial process is a description of how a spatial
pa�ern might be generated

Generative models

An observed pa�ern as a possible realization of an
hypothesized process
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Deterministic vs. stochastic
processes

Deterministic processes: always produce the same
outcome

Results in a spatially continuous field

z = 2x + 3y
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Deterministic vs. stochastic
processes

x <- rast(nrows = 10, ncols=10, xmin = 0, xmax=10, ymin = 0, ymax=10)1
values(x) <- 12
z <- x3
values(z) <- 2 * crds(x)[,1] + 3*crds(x)[,2]4

8



Deterministic vs. stochastic
processes

Stochastic processes: variation
makes each realization
difficult to predict

The process is random, not the
result (!!)

Measurement error makes
deterministic processes
appear stochastic

z = 2x + 3y + d

x <- rast(nrows = 10, ncols=10, xmin = 0, 1
values(x) <- 12
fun <- function(z){3
a <- z4
d <- runif(ncell(z), -50,50)5
values(a) <- 2 * crds(x)[,1] + 3*crds(x)[,6
return(a)7
}8

9
b <- replicate(n=6, fun(z=x), simplify=FAL10
d <- do.call(c, b)11
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Deterministic vs. stochastic
processes
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Expected values and hypothesis
testing

Considering each outcome as the realization of
a process allows us to generate expected values

The simplest spatial process is Completely
Spatial Random (CSR) process

First Order effects: any event has an equal
probability of occurring in a location

Second Order effects: the location of one event
is independent of the other events

From Manuel Gimond
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Generating expactations for CSR
We can use quadrat counts to estimate the
expected number of events in a given area

The probability of each possible count is given
by:

Given total coverage of quadrats, then 
and
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Revisiting Ripley’s 
Probability is tied to quadrat size – we can deal with this using a moving window

If points have independent, fixed marginal densities, then they exhibit complete,
spatial randomness (CSR)

The K function is an alternative, based on a series of circles with increasing radius

We can test for clustering by comparing to the expectation:

if  then there is clustering at the scale defined by 

K

K(d) = E( )λ−1 Nd

(d) = πKCSR d2

k(d) > (d)KCSR d
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Ripley’s  Function
When working with a sample the distribution of  is
unknown

Estimate with

where:
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Ripley’s  FunctionK
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Ripley’s  FunctionK
kf <- Kest(bramblecanes, correction-"border")1
plot(kf)2
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Ripley’s  Function
accounting for variation in 

K

d

kf.env <- envelope(bramblecanes, correction="border", envelope = FALSE, ver1
plot(kf.env)2
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Other functions
 function: square root

transformation of 

 function: the cumulative
frequency distribution of the
nearest neighbor distances

 function: similar to  but
based on randomly located
points

L
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Tobler’s Law
‘everything is usually related to all else but those which
are near to each other are more related when compared
to those that are further away’.
Waldo Tobler
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Spatial autocorrelation

From Manuel Gimond
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(One) Measure of autocorrelation
Moran’s I
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Moran’s I: An example
Use spdep package

Estimate neighbors

Generate weighted average

set.seed(2354)1
# Load the shapefile2
s <- readRDS(url("https://github.com/mgimond/Data/raw/gh-pages3

4
# Define the neighbors (use queen case)5
nb <- poly2nb(s, queen=TRUE)6

7
# Compute the neighboring average homicide rates8
lw <- nb2listw(nb, style="W", zero.policy=TRUE)9
#estimate Moran's I10
moran.test(s$HR80,lw, alternative="greater")11

    Moran I test under randomisation

data:  s$HR80  
weights: lw    

Moran I statistic standard deviate = 1.8891, p-value = 0.02944
alternative hypothesis: greater
sample estimates:
Moran I statistic       Expectation          Variance 
      0.136277593      -0.015151515       0.006425761 
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Moran’s I: An example
M1 <- moran.mc(s$HR80, lw, nsim=9999, alte1

2
3
4

# Display the resulting statistics5
M16

    Monte-Carlo simulation of Moran I

data:  s$HR80 
weights: lw  
number of simulations + 1: 10000 

statistic = 0.13628, observed rank = 9575, p-
value = 0.0425
alternative hypothesis: greater
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The challenge of areal data
Spatial autocorrelation threatens second order
randomness

Areal data means an infinite number of potential
distances

Neighbor matrices, , allow different characterizationsW
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Interpolation
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Interpolation
Goal: estimate the value of  at new points in 

Most useful for continuous values

Nearest-neighbor, Inverse Distance Weighting, Kriging

z xi
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Nearest neighbor



find  such that  is minimized

The estimate of  is 

i | − x|xi

z zi
# data retrieved from https://www.epa.gov/outdoor-air-quality-1

2
aq <- read_csv("/opt/data/data/classexamples/ad_viz_plotval_da3
  st_as_sf(., coords = c("Site Longitude", "Site Latitude"), c4
  st_transform(., crs = "EPSG:8826") %>% 5
  mutate(date = as_date(parse_datetime(Date, "%m/%d/%Y"))) %>%6
  filter(., date >= 2024-07-01) %>% 7
  filter(., date > "2024-07-01" & date < "2024-07-31")8
aq.sum <- aq %>% 9
  group_by(., `Site ID`) %>% 10
  summarise(., meanpm25 = mean(`Daily AQI Value`))11

12
nodes <- st_make_grid(aq.sum,13
                      what = "centers")14

15
dist <- distance(vect(nodes), vect(aq.sum))16
nearest <- apply(dist, 1, function(x) which(x == min(x)))17
aq.nn <- aq.sum$meanpm25[nearest]18
preds <- st_as_sf(nodes)19
preds$aq <- aq.nn20

21
preds <- as(preds, "Spatial")22
sp::gridded(preds) <- TRUE23
preds.rast <- rast(preds)24
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Inverse-Distance Weighting
Weight closer observations more heavily

where

and  (  is inverse;  is inverse square)

(x) =ẑ
∑i=1 wizi

∑i=1 wi

= |x −wi xi|
−α

α > 0 α = 1 α = 2

30



Inverse-Distance Weighting
terra::interpolate provides flexible interpolation
methods

Use the gstat package to develop the formula
mgsf05 <- gstat(id = "meanpm25", formula = meanpm25~1, data=aq.sum,  nmax=71
mgsf2 <- gstat(id = "meanpm25", formula = meanpm25~1, data=aq.sum,  nmax=7,2
interpolate_gstat <- function(model, x, crs, ...) {3
    v <- st_as_sf(x, coords=c("x", "y"), crs=crs)4
    p <- predict(model, v, ...)5
    as.data.frame(p)[,1:2]6
}7
zsf05 <- interpolate(preds.rast, mgsf05, debug.level=0, fun=interpolate_gst8
zsf2 <- interpolate(preds.rast, mgsf2, debug.level=0, fun=interpolate_gstat9
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Inverse-Distance Weighting
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Inverse-Distance Weighting

33


