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Objectives

By the end of today you should be able to:

* Distinguish deterministic and stochastic processes
¢ Define autocorrelation and describe its estimation
e Articulate the benefits and drawbacks of autocorrelation

e [everage point patterns and autocorrelation to
interpolate missing data




But first...




Patterns as realizations of spatial
processes

* A spatial process is a description of how a spatial
pattern might be generated

e Generative models

* An observed pattern as a possible realization of an
hypothesized process



Deterministic vs. stochastic
processes

* Deterministic processes: always produce the same
outcome

z=2x + 3y

* Results in a spatially continuous field



X <- rast(nrows = 10, ncols=10, xmin = 0, xmax=10, ymin = 0, ymax=10)
values (x) <- 1

3 z <- X
values (z) <= 2 * crds(x)[,1] + 3*crds(x)[,2]




Deterministic vs. stochastic

processes

e Stochastic processes: variation
makes each realization
difficult to predict

z=2x+3y+d

e The process is random, not the
result (!!)

¢ Measurement error makes
deterministic processes
appear stochastic

X <- rast(nrows = 10, ncols=10, xmin = O,

values (x) <- 1

fun <- function (z) {

a <- z

d <= runif (ncell(z), -50,50)
values (a) <= 2 * crds(x)[,1]
return (a)

}

b <- replicate(n=6, fun (z=x),
d <- do.call(c, b)

+ 3*crds (x) [,

simplify=FAI




Deterministic vs. stochastic

processes
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Expected values and hypothesis
testing

e Considering each outcome as the realization of points have equal
ProloaIthry of appearnng

a process allows us to generate expected values anywhere
e The simplest spatial process is Completely
Spatial Random (CSR) process

e First Order effects: any event has an equal . %
probability of occurring in a location

e Second Order effects: the location of one event e XN o

is independent of the other events

oints dont infFluence
each other's location

From Manuel Gimond

11



Generating expactations for CSR

e We can use quadrat counts to estimate the
expected number of events in a given area

e The probability of each possible count is given
by:
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Revisiting Ripley’s K

e Probability is tied to quadrat size — we can deal with this using a moving window

e [f points have independent, fixed marginal densities, then they exhibit complete,
spatial randomness (CSR)

e The K function is an alternative, based on a series of circles with increasing radius
K(d) — A_lE(Nd)

e We can test for clustering by comparing to the expectation:

KCSR (d) = 7Td2

o if k(d) > Kcgsr(d) then there is clustering at the scale defined by d
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Ripley’s K Function

e When working with a sample the distribution of K is
unknown

e Estimate with

where:
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Ripley’s K Function



1 kf <- Kest (bramblecanes, correction-"border")
2 plot (kf)
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kf.env <- envelope (bramblecanes,

plot (kf.env)
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Other functions

e [ function: square root
transformation of K

e (& function: the cumulative
frequency distribution of the
nearest neighbor distances

e F function: similar to GG but
based on randomly located
points

gf.env

A
- Gobs(r)
T theo(r)

I I I
0.005 0.010 0.015

r (one unit = 9 metres)
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Tobler’s Law




Spatial autocorrelation

£ Features were
randomly distributed ..

PoPuIaJrion
densﬁry ma
of the U
would look
ike this

.. elevation map
of the US
would look

ke +his

From Manuel Gimond
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(One) Measure of autocorrelation

e Moran’s 1

n n
ZZWH(XJ- - E)[xj- %)
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HR80

0.00 to 6.10
6.10t0 7.17
7.17 10 9.30
9.30 to 11.12
11.12to 13.04
13.04 to 15.63
15.63t0 21.29
212910 33.38

set.seed(2354)
# Load the shapefile

s <- readRDS (url ("https://github.com/mgimond/Data/raw/gh-pageg

# Define the neighbors (use queen case)
nb <- polyZnb (s, queen=TRUE)

# Compute the neighboring average homicide rates
lw <- nb2listw(nb, style="W", zero.policy=TRUE)
festimate Moran's I

1
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= o

moran.test (sSHR80, 1w, alternative="greater")



M1l <- moran.mc (sSHR80, 1lw, nsim=9999, alte

Density plot of permutation outcomes

# Display the resulting statistics
M1

|
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

s$HR80
Monte-Carlo simulation of Moran |




The challenge of areal data
* Spatial autocorrelation threatens second order
randomness

* Areal data means an infinite number of potential
distances

e Neighbor matrices, W, allow different characterizations
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Interpolation




Interpolation

e Goal: estimate the value of z at new points in Xj

e Most useful for continuous values

e Nearest-neighbor, Inverse Distance Weighting, Kriging
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Nearest neighbor



# data retrieved from https://www.epa.gov/outdoor-air-quality-

aqg <- read csv("/opt/data/data/classexamples/ad viz plotval dq
st as sf(., coords = c("Site Longitude", "Site Latitude"),
st transform(., crs = "EPSG:8826") %>%
mutate (date = as date(parse datetime (Date, "Sm/%d/SY")) ) %>
filter (., date >= 2024-07-01) %>%
filter (., date > "2024-07-01" & date < "2024-07-31")

ag.sum <- ag %>%
group _by(., "Site ID") %>%
summarise (., meanpm25 = mean( Daily AQI Value'))

nodes <- st make grid(aq.sum,
what = "centers")

dist <- distance (vect (nodes), vect (ag.sum))

nearest <- apply(dist, 1, function(x) which(x == min(x)))
ag.nn <- ag.sum$meanpm25[nearest]

preds <- st as sf (nodes)

preds$Saq <- ag.nn

preds <- as (preds, "Spatial")
sp::gridded (preds) <- TRUE
preds.rast <- rast (preds)

1700000 1800000

1600000

o
o
(=]
[=]
[=}
n
—

1400000

1300000

2300000

2400000

2500000

2600000




Inverse-Distance Weighting

* Weight closer observations more heavily

where

and a > 0 (o = 1 isinverse; & = 2 is inverse square)
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Inverse-Distance Weighting

 terra::interpolate provides flexible interpolation
methods

e Use the gstat package to develop the formula

mgsf05 <- gstat(id = "meanpmZ25", formula = meanpm25~1, data=aqg.sum, nmax=7/
mgsf2 <- gstat(id = "meanpm25", formula = meanpm25~1, data=ag.sum, nmax=7,
interpolate gstat <- function (model, x, crs, ...) {

v <- st as sf(x, coords=c("x", "y"), crs=crs)
p <- predict (model, v, ...)
as.data.frame(p) [,1:2]

}

zsf05 <- Interpolate(preds.rast, mgsf05, debug.level=0, fun=interpolate gst
zsf2 <- interpolate(preds.rast, mgsf2, debug.level=0, fun=interpolate gstat




Inverse-Distance Weighting
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