Statistical Modelling II

HES 505 Fall 2024: Session 22

Carolyn Koehn

Objectives

By the end of today you should be able to:

- Articulate the differences between statistical learning classifiers and logistic regression
- Describe several classification trees and their relationship to Random Forests
- Describe MaxEnt models for presence-only data

Revisiting Classification

Favorability in General

- Logistic regression treats as a (generalized) linear function
- Allows for multiple qualitative classes
- Ensures that estimates of are [0,1]

Key assumptions of logistic regression

- Dependent variable must be binary
- Observations must be independent (important for spatial analyses)
- Predictors should not be collinear
- Predictors should be linearly related to the log-odds
- Sample Size

Beyond Linearity

- Logistic (and other generalized linear models) are relatively interpretable
- Probability theory allows robust inference of effects
- Predictive power can be low
- Relaxing the linearity assumption can help

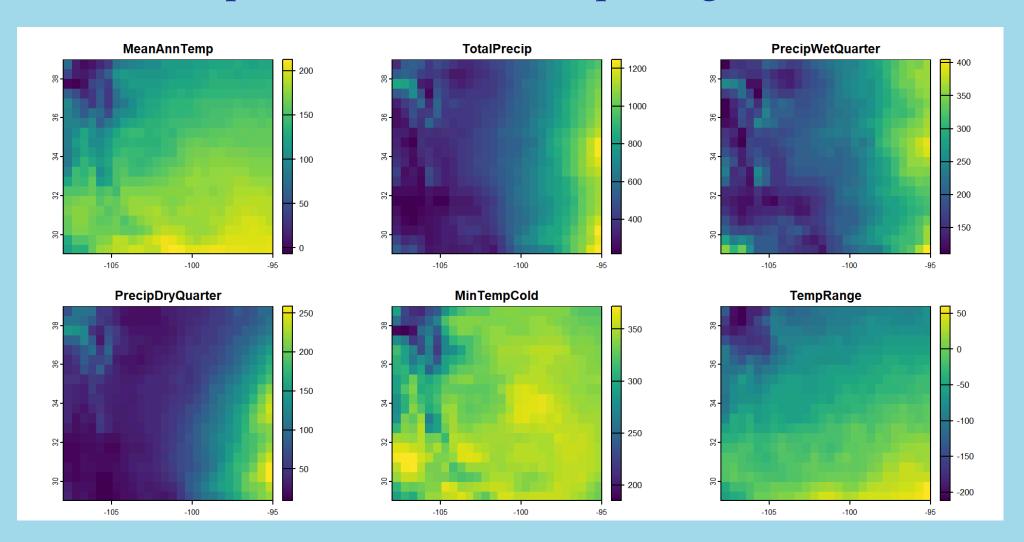
Classification Trees

- Use decision rules to segment the predictor space
- Series of consecutive decision rules form a 'tree'
- Terminal nodes (leaves) are the outcome; internal nodes (branches) the splits

Classification Trees

- Divide the predictor space () into non-overlapping regions
- Every observation in gets the same prediction
- Recursive binary splitting
- Pruning and over-fitting

Predictor inputs from the dismo package



Predictor inputs from the dismo package

```
base.path <- "/opt/data/data/presabsexample/" #sets the path to the root di

pres.abs <- st_read(paste0(base.path, "presenceabsence.shp"), quiet = TRUE)

pred.files <- list.files(base.path,pattern='grd$', full.names=TRUE) #get th

pred.stack <- rast(pred.files) #read into a RasterStack

names(pred.stack) <- c("MeanAnnTemp", "TotalPrecip", "PrecipWetQuarter", "P

plot(pred.stack)</pre>
```

The sample data

Building our dataframe

```
1 pts.df <- terra::extract(pred.stack, vect(pres.abs), df=TRUE)</pre>
   head(pts.df)
  ID MeanAnnTemp TotalPrecip PrecipWetQuarter PrecipDryQuarter MinTempCold
  1
             155
                          667
                                            253
                                                               71
                                                                           350
             147
                          678
                                            266
                                                               66
                                                                           351
                          261
                                                                           329
             123
                                            117
                                                               40
             181
                          533
                                                                           348
  4
                                            198
                                                               69
             127
                          589
                                            257
                                                               48
                                                                           338
              83
                          438
                                            213
                                                               38
                                                                           278
  TempRange
        -45
        -58
        -64
4
        -5
       -81
       -107
```

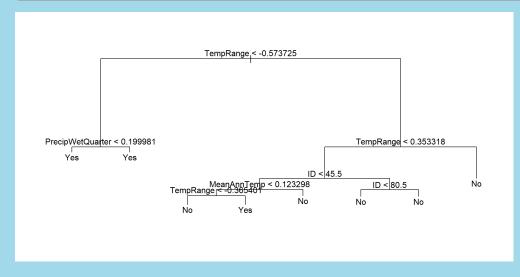
Building our dataframe

```
1 pts.df[,2:7] <- scale(pts.df[,2:7])</pre>
  summary(pts.df)
               MeanAnnTemp
                                 TotalPrecip
                                                  PrecipWetQuarter
     ID
    : 1.00
Min.
              Min.
                      :-3.3729
                                Min.
                                       :-1.3377
                                                 Min. :-1.6926
1st Qu.: 25.75
              1st Qu.:-0.4594
                                1st Qu.:-0.7980
                                                 1st Qu.:-0.6895
Median : 50.50
              Median : 0.2282
                                Median :-0.2373
                                                 Median : -0.2224
              Mean : 0.0000
Mean : 50.50
                                Mean : 0.0000
                                                 Mean : 0.0000
3rd Qu.: 75.25
              3rd Qu.: 0.7118
                                3rd Qu.: 0.7140
                                                 3rd Qu.: 0.6508
Max. :100.00
               Max. : 1.4285
                                Max. : 2.4843
                                                        : 2.2713
                                                 Max.
PrecipDryQuarter MinTempCold
                                   TempRange
                               Min. :-2.7924
Min. :-1.0828
                Min.
                       :-3.9919
1st Ou.:-0.7013
                1st Ou.:-0.0598
                               1st Ou.:-0.5216
Median : -0.3770
                Median : 0.3582
                                Median : 0.2075
Mean : 0.0000
                Mean : 0.0000
                               Mean : 0.0000
                3rd Qu.: 0.5495 3rd Qu.: 0.6450
3rd Qu.: 0.4290
                Max. : 1.1092
Max. : 3.1713
                                 Max. : 2.0407
```

An example

Fitting the classification tree

```
1 library(tree)
2 pts.df <- cbind(pts.df, pres.abs$y)
3 colnames(pts.df)[8] <- "y"
4 pts.df$y <- as.factor(ifelse(pts.df$y == 1, "Yes", "No"))
5 tree.model <- tree(y ~ . , pts.df)
6 plot(tree.model)
7 text(tree.model, pretty=0)</pre>
```



An example

1 summary(tree.model)

• Fitting the classification tree

Classification tree:
tree(formula = y ~ ., data = pts.df)
Variables actually used in tree construction:
[1] "TempRange" "PrecipWetQuarter" "ID" "MeanAnnTemp"
Number of terminal nodes: 8
Residual mean deviance: 0.3164 = 29.11 / 92
Misclassification error rate: 0.07 = 7 / 100

40

Benefits and drawbacks

Benefits

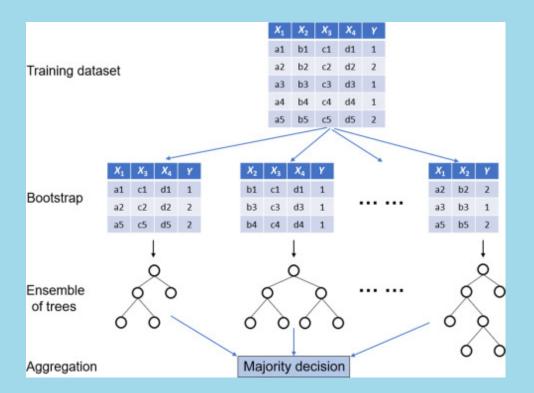
- Easy to explain
- Links to human decisionmaking
- Graphical displays
- Easy handling of qualitative predictors

Costs

- Lower predictive accuracy than other methods
- Not necessarily robust

Random Forests

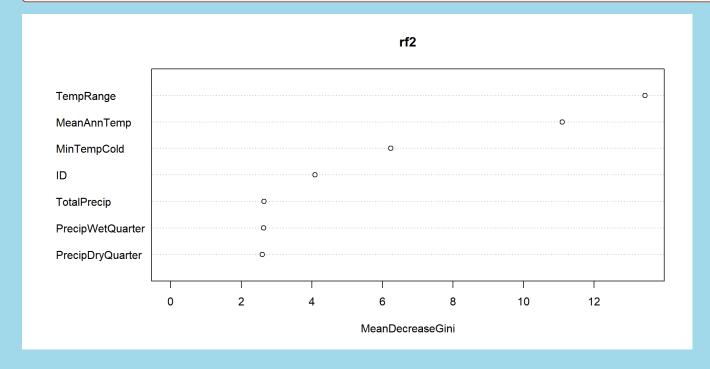
- Grow 100(000s) of trees using bootstrapping
- Random sample of predictors considered at each split
- Avoids correlation amongst multiple predictions
- Average of trees improves overall outcome (usually)
- Lots of extensions



An example

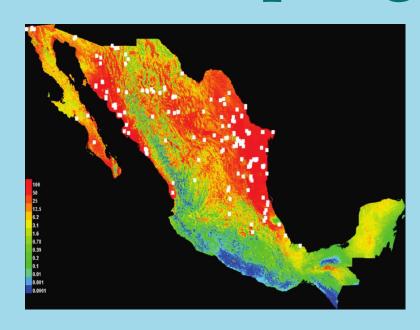
• Fitting the Random Forest

```
1 library(randomForest)
2 class.model <- y ~ .
3 rf2 <- randomForest(class.model, data=pts.df)
4 varImpPlot(rf2)</pre>
```



Modelling Presence-Background Data

The sampling situation



From Lentz et al. 2008

- Opportunistic collection of presences only
- Hypothesized predictors of occurrence are measured (or extracted) at each presence
- Background points (or pseudoabsences) generated for comparison

The Challenge with Background Points

- What constitutes background?
- Not measuring probability, but relative likelihood of occurrence
- Sampling bias affects estimation
- The intercept

Maximum Entropy models

- MaxEnt (after the original software)
- Need *plausible* background points across the remainder of the study area
- Iterative fitting to maximize the distance between predictions generated by a spatially uniform model
- Tuning parameters to account for differences in sampling effort, placement of background points, etc
- Development of the model beyond the scope of this course, but see Elith et al. 2010



From Elith et al. 2010

Challenges with MaxEnt

- Not measuring probability, but relative likelihood of occurrence
- Sampling bias affects estimation (but can be mitigated using tuning parameters)
- Theoretical issues with background points and the intercept
- Recent developments relate MaxEnt (with cloglog links)
 to Inhomogenous Point Process models

Extensions

- Polynomial, splines, piece-wise regression
- Neural nets, Support Vector Machines, many many more

Motivating Question

How do Collaborative Forest Landscape Restoration projects compare to other National Forest lands with respect to social and wildfire risks?

Thinking about the data

- Datasets Forest Service Boundaries, CFLRP
 Boundaries, Wildfire Risk Raster, CEJST shapefile
- Dependent Variable CFLRP (T or F)
- Independent Variables Wildfire hazard, income, education, housing burden

Building some Pseudocode

- 1 1. Load libraries
- 2 2. Load data
- 3 3. Check validity and alignment
- 4 4. Subset to relevant geographies
- 5 5. Select relevant attributes
- 6 6. Extract wildfire risk
- 7 7. CFLRP T or F
- 8 8. Compare risks

Load libraries

```
1 library(sf)
2 library(terra)
3 library(tidyverse)
4 library(tmap)
```

Load the data

 Downloading USFS data using the function in the code folder

```
download unzip read <- function(link) {</pre>
  tmp <- tempfile()</pre>
 download.file(link, tmp)
 tmp2 <- tempfile()</pre>
 unzip(zipfile=tmp, exdir=tmp2)
  shapefile.sf <- read sf(tmp2)</pre>
### FS Boundaries
fs.url <- "https://data.fs.usda.gov/geodata/edw/edw resources/shp/S USA.Adm
fs.bdry <- download unzip read(link = fs.url)</pre>
### CFLRP Data
cflrp.url <- "https://data.fs.usda.gov/geodata/edw/edw resources/shp/S USA.
cflrp.bdry <- download unzip read(link = cflrp.url)</pre>
```