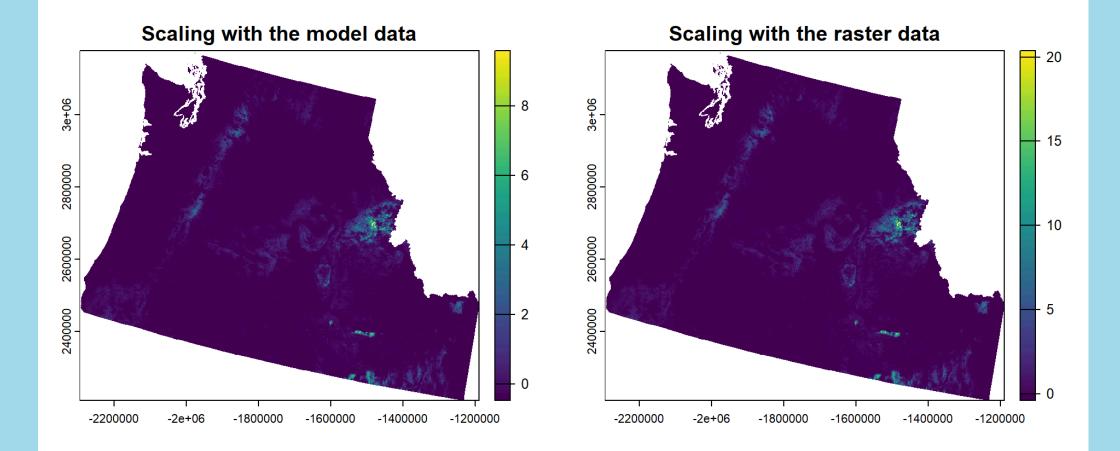
Data Visualization and Maps I HES 505 Fall 2024: Session 25

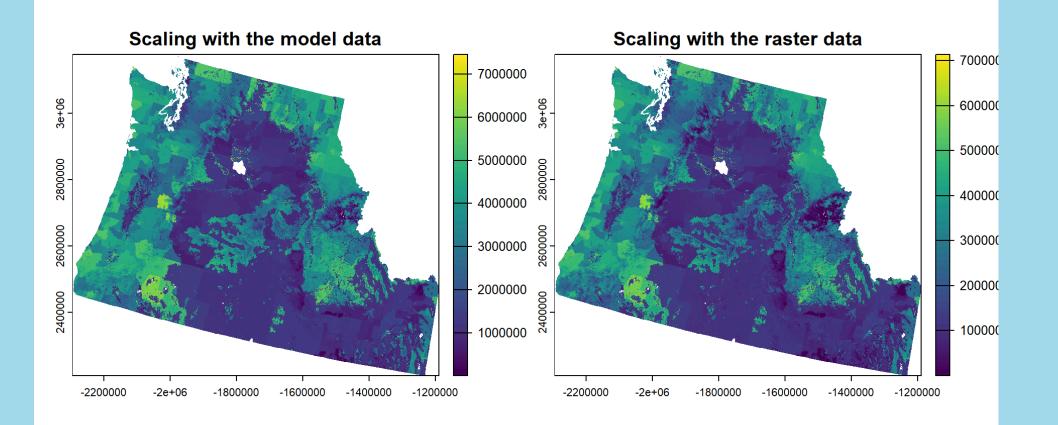
Carolyn Koehn

Objectives

By the end of today you should be able to:


- Describe some basic principles of data visualization
- Extend principles of data visualization to the development of maps
- Distinguish between several common types of spatial data visualization
- Understand the relationship between the Grammar of Graphics and ggplot syntax
- Describe the various options for customizing ggplots and their syntactic conventions

But first... Scaling


Assignment 9: Scaling the hazard data

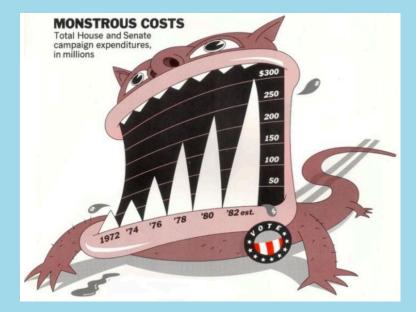
- 1 hazard.smooth.scl <- (hazard.smooth mean(incident.cejst.prep\$hazard))/sd(</pre>
- 2 #versus
- 3 hazard.smooth.scl.nogood <- scale(hazard.smooth)</pre>

Assignment 9: Scaling the hazard data

Assignment 9: Different predictions for different scaling

Introduction to Data Visualization

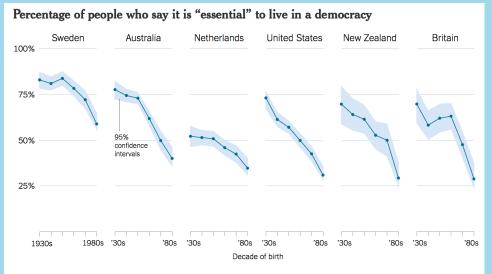
Principles vs. Rules


- Lots of examples of good and bad data visualization
- What makes a graphic good (or bad)?
- Who decides?

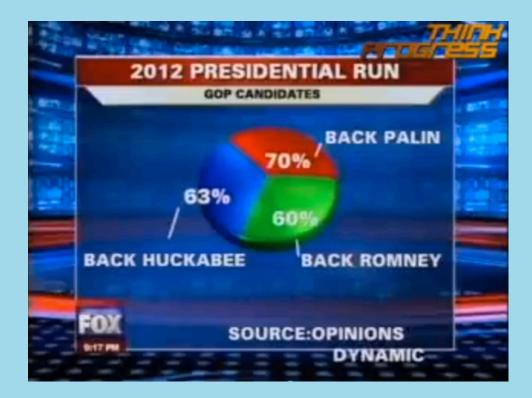
- **Rule:** externally compels you, through force, threat or punishment, to do the things someone else has deemed good or right.
- **Principle:** internally motivating because it is a *good practice;* a general statement describing a philosophy that good rules should satisfy
- Rules contribute to the design process, but do not guarantee a satisfactory outcome

"Graphical excellence is the well-designed presentation of interesting data—a matter of substance, of statistics, and of design ... [It] consists of complex ideas communicated with clarity, precision, and efficiency.... [It] is that which gives to the viewer the greatest number of ideas in the shortest time with the least ink in the smallest space ... [It] is nearly always multivariate ... And graphical excellence requires telling the truth about the data." - Edward Tufte

Ugly, Wrong, and Bad

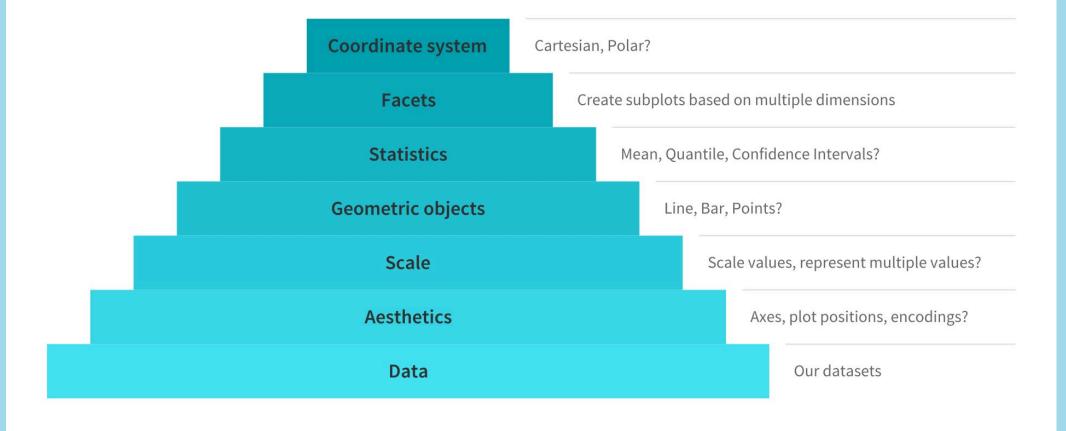

- *Ugly*: graphic is clear and informative, but has aesthetic issues
- *Bad*: graphic is unclear, confusing, or decieving
- *Wrong*: the figure is objectively incorrect

Monstrous Costs' by Nigel Holmes from Healy 2018


Bad and Wrong

- Presentation of the data is (intentionally?) decieving
- Presentation is just incorrect

Source: Yascha Mounk and Roberto Stefan Foa, "The Signs of Democratic Deconsolidation," Journal of Democracy | By The New York Times


Tricky (from Healy 2018)

Wrong

Grammar of Graphics (Wilkinson 2005)

Major Components of the Grammar of Graphics

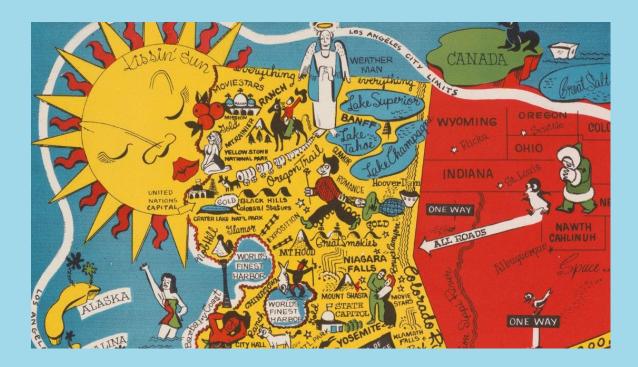
Aesthetics: Mapping Data to Visual Elements

- Define the systematic conversion of data into elements of the visualization
- Are either categorical or continuous (exclusively)
- Examples include x, y, fill, color, and alpha

Type of variable	Examples	Appropriate scale	Description	
quantitative/numerical continuous	1.3, 5.7, 83, 1.5x10 ⁻²	continuous	Arbitrary numerical values. These can be integers, rational numbers, or real numbers.	
quantitative/numerical discrete	1, 2, 3, 4	discrete	Numbers in discrete units. These are most commonly but not necessarily integers. For example, the numbers 0.5, 1.0, 1.5 could also be treated as discrete if intermediate values cannot exist in the given dataset.	
qualitative/categorical unordered	dog, cat, fish	discrete	Categories without order. These are discrete and unique categories that have no inherent order. These variables are also called <i>factors</i> .	
qualitative/categorical ordered	good, fair, poor	discrete	Categories with order. These are discrete and unique categories with an order. For example, "fair" always lies between "good" and "poor". These variables are also called ordered factors.	
date or time	Jan. 5 2018, 8:03am	continuous or discrete	Specific days and/or times. Also generic dates, such as July 4 or Dec. 25 (without year).	
text	The quick brown fox jumps over the lazy dog.	none, or discrete	Free-form text. Can be treated as categorical if needed.	

From Wilke 2019

Scales


- Scales map data values to their aesthetics
- Must be a one-to-one relationship; each specific data value should map to only one aesthetic

Principles of Data Visualization

- Be Honest
- Principle of proportional ink
- Avoid unnecessary 'chart junk'
- Use color judiciously
- Balance data and context

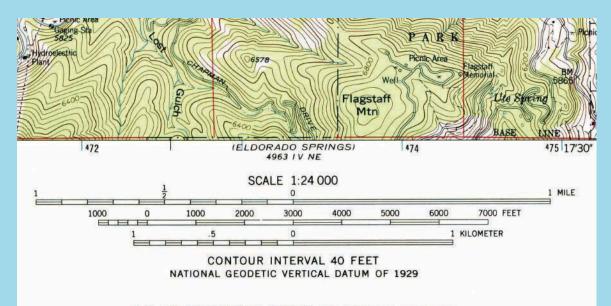
Extending Data Viz to Maps

Telling stories with maps

- Maps organize a lot of information in a coherent way
- They invite critique and inspection
- They are also
 aesthetic objects that
 can engage broader
 audiences

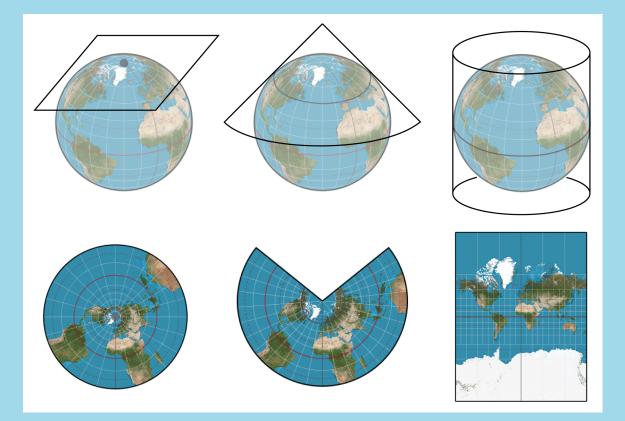
Key Issues

- Thinking about projections
- Scale of the map
- Errors of Omission


Cartographic Principles

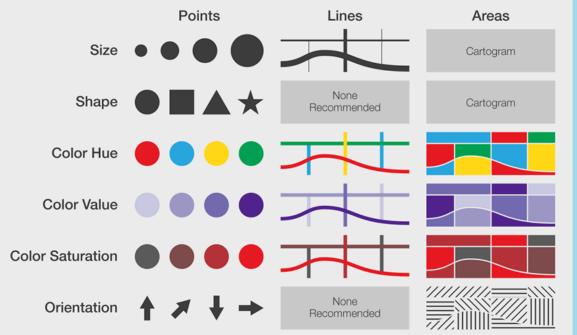
- 1. Concept before compilation
- 2. Hierarchy with harmony (Important things should look important)
- 3. Simplicity from sacrifice
- 4. Maximum information at minimum cost
- 5. Engage emotion to enhance understanding

Map Elements


Scale

- Relates map distance to distance on the ground
- Ratio scales (1:24,000 or 1/24,000)
- Graphic scales
- Large vs. smallscale?

THIS MAP COMPLIES WITH NATIONAL MAP ACCURACY STANDARDS FOR SALE BY U.S. GEOLOGICAL SURVEY, P.O. BOX 25286, DENVER, COLORADO 80225 A FOLDER DESCRIBING TOPOGRAPHIC MAPS AND SYMBOLS IS AVAILABLE ON REQUEST


Projection

Developable Surfaces

- Distortion makes
 scale invalid across
 large areas
- Distortion increases
 with distance from
 standard line
- Five distortions:
 areas, angles, shapes,
 distances, and
 direction

Map Symbols

Cartograms, or value-by-area maps, distort geographic areas based on a single variable associated that area, (e.g., the size of a county is proportional to its population density).

- Graphic code for retrieving information
- (De-)emphasize
 (un)important
 information
- Contrast and the role of colors

Generalization

A good map tells a multitude of little white lies: it supresses truth to help the user see what needs to be seen...

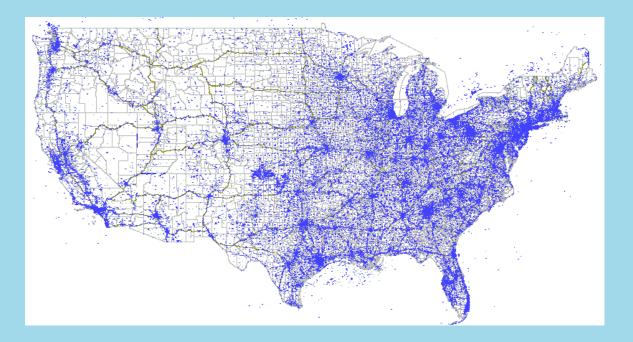
Mark Monmonier

Geometry

		T T		0 11 1
Operations		Large-scale	Photo-reduced	Small-scale
Displacement				
Elimination				
(Scale-driven) generalisation		<u> </u>	L	\sim
Partial modification				
Point-reduction		A	A	A
Smoothing	Curve-fitting		1_	A
	Filtering		L	
Typification		MM	M	

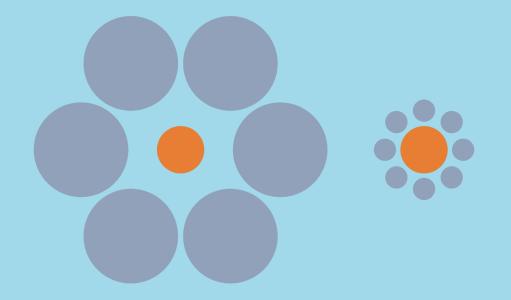
Zhilin et al. 2008

Context


- Filter out irrelevant details
- Two elements: selection and classification
- Reflect interpretations of the relative importance of different features

Mackaness and Chaudry

Data Maps


Point Maps

- Dot Maps: quantity represented by amount and concentration of dots
- Proportional Symbol
 Map: Geometric
 symbols scaled in
 proportion to a
 quantity

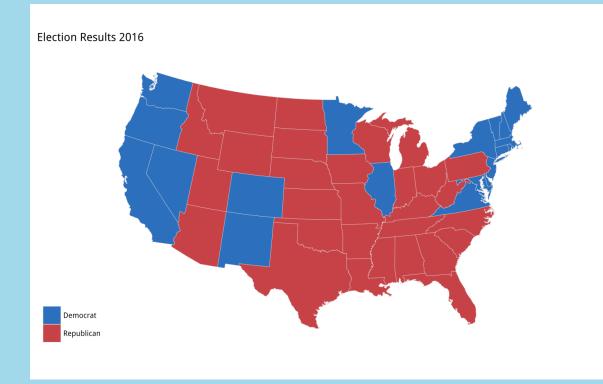
Ebbinghaus' illusion

Line Maps

Land-Grab Universities

A High Country News Investigation

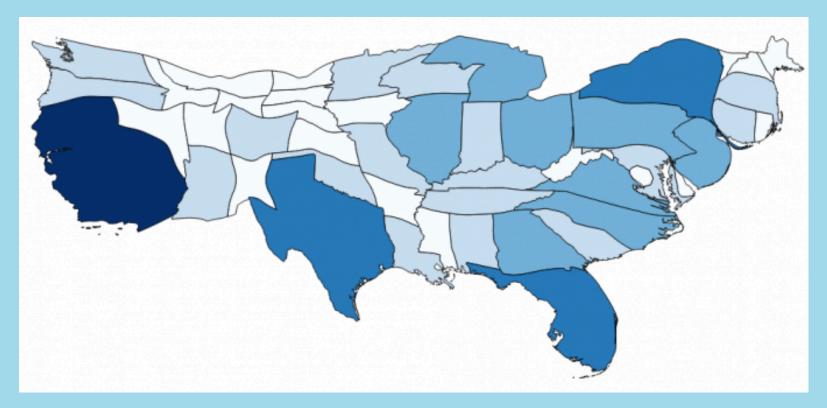
By Robert Lee, Tristan Ahtone, Margaret Pearce, Kalen Goodluck, Geoff McGhee, Cody Leff, Katherine Lanpher and Taryn Salinas.


Overview Universities Tribal Nations Lands Stories How the United States funded land-grant universities with expropriated Indigenous land.

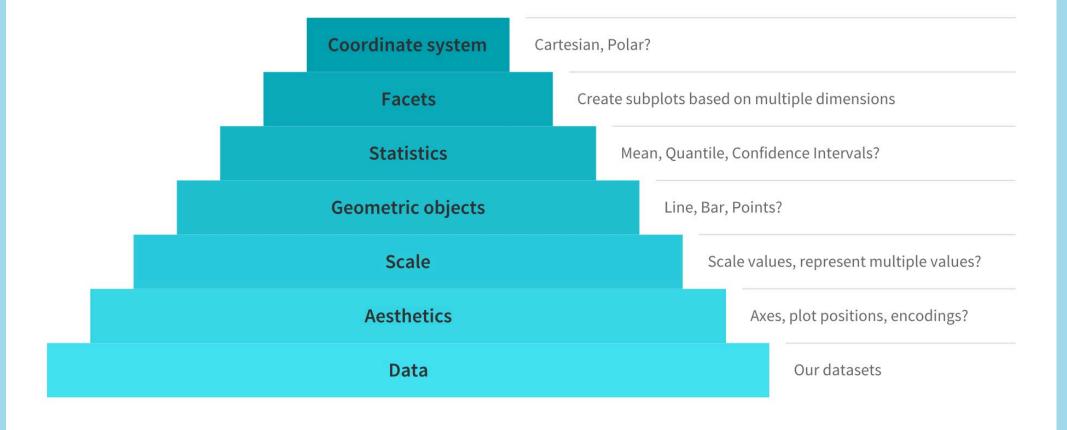
This site **reconstructs the ties** between Indigenous dispossession and the funding of land-grant universities.

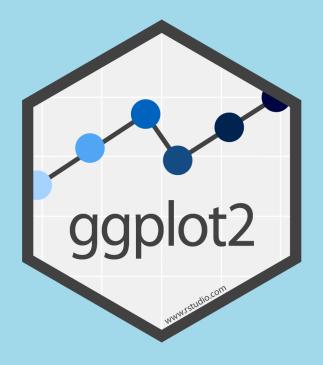
From High Country News

Choropleth


- Mapping color to geographies
- Common problems

From Healy 2019


Cartogram


- Adjusts for differences in area, population, etc
- Common Problems

From Healy 2019

Major Components of the Grammar of Graphics

{ggplot2} is a system for declaratively creating graphics, based on "The Grammar of Graphics" (Wilkinson, 2005). You provide the data, tell ggplot2 how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details.

Advantages of {ggplot2}

- consistent underlying "grammar of graphics" (Wilkinson 2005)
- very flexible, layered plot specification
- theme system for polishing plot appearance
- lots of additional functionality thanks to extensions
- active and helpful community

The Grammar of {ggplot2}

Component	Function	Explanation
Data	ggplot(data)	The raw data that you want to visualise.
Aesthetics	aes()	Aesthetic mappings between variables and visual properties.
Geometries	geom_*()	The geometric shapes representing the data.

The Grammar of {ggplot2}

Component	Function	Explanation
Data	ggplot(data)	The raw data that you want to visualise.
Aesthetics	aes()	Aesthetic mappings between variables and visual properties.
Geometries	geom_*()	The geometric shapes representing the data.
Statistics	<pre>stat_*()</pre>	The statistical transformations applied to the data.
Scales	<pre>scale_*()</pre>	Maps between the data and the aesthetic dimensions.
Coordinate System	coord_*()	Maps data into the plane of the data rectangle.
Facets	facet_*()	The arrangement of the data into a grid of plots.
Visual Themes	<pre>theme() and theme_*()</pre>	The overall visual defaults of a plot.

A Basic ggplot Example

The Data

Bike sharing counts in London, UK, powered by TfL Open Data

- covers the years 2015 and 2016
- incl. weather data acquired from freemeteo.com
- prepared by Hristo Mavrodiev for Kaggle
- further modification by myself

Variable	Description	Class	
date	Date encoded as 'YYYY-MM-DD'	date	
day_night	`day` (6:00am–5:59pm) or `night` (6:00pm–5:59am)	character	
year	`2015` or `2016`	factor	
month	`1` (January) to `12` (December)	factor	
season	`winter`, `spring`, `summer`, or `autumn`	factor	
count	Sum of reported bikes rented	integer	
is_workday	`TRUE` being Monday to Friday and no bank holiday	logical	
is_weekend	`TRUE` being Saturday or Sunday	logical	
is_holiday	`TRUE` being a bank holiday in the UK	logical	
temp	Average air temperature (°C)	double	
temp_feel	Average feels like temperature (°C)	double	
humidity	Average air humidity (%)	double	
wind_speed	Average wind speed (km/h)	double	
weather_type	Most common weather type	character	

ggplot2::ggplot()

ggplot: Create a new ggplot

Description

`ggplot()` initializes a ggplot object. It can be used to declare the input data frame for a graphic and to specify the set of plot aesthetics intended to be common throughout all subsequent layers unless specifically overridden.

Usage

ggplot(data = NULL, mapping = aes(), ..., environment = parent.frame())

Arguments

data	Default dataset to use for plot. If not already a data.frame, will be converted to one by $\frac{fortify()}{fortify()}$. If not specified, must be supplied in each layer added to the plot.
mapping	Default list of aesthetic mappings to use for plot. If not specified, must be supplied in each layer added to the plot.
	Other arguments passed on to methods. Not currently used.
environment	DEPRECATED. Used prior to tidy evaluation.

Details

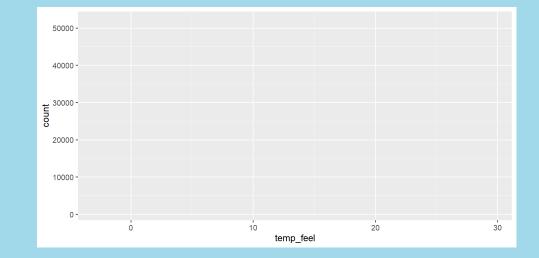
`ggplot()` is used to construct the initial plot object, and is almost always followed by `+` to add component to the plot. There are three common ways to invoke `ggplot()`:

`ggplot(df, aes(x, y, other aesthetics))`

`ggplot(df)`

`ggplot()`

Data


1 ggplot(data = bikes)

Aesthetic Mapping

- = link variables to graphical properties
- positions (**x**, **y**)
- colors (color, fill)
- shapes (shape, linetype)
- size (size)
- transparency (alpha)
- groupings (group)

Aesthetic Mapping

- 1 ggplot(data = bikes) +
- 2 aes(x = temp_feel, y = count)

aesthetics

aes() outside as component

```
1 ggplot(data = bikes) +
2 aes(x = temp feel, y = count)
```

aes() inside, explicit matching

1 ggplot(data = bikes, mapping = aes(x = temp_feel, y = count))

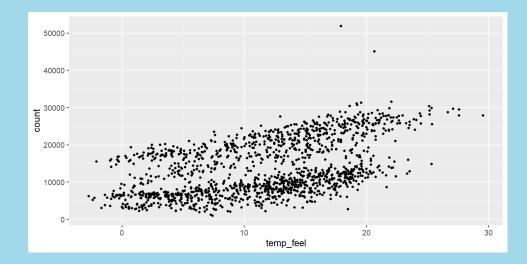
aes() inside, implicit matching

1 ggplot(bikes, aes(temp_feel, count))

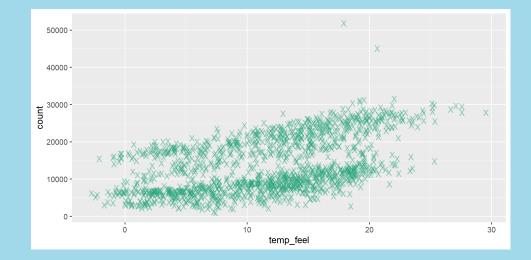
aes() inside, mixed matching

1 ggplot(bikes, aes(x = temp_feel, y = count))

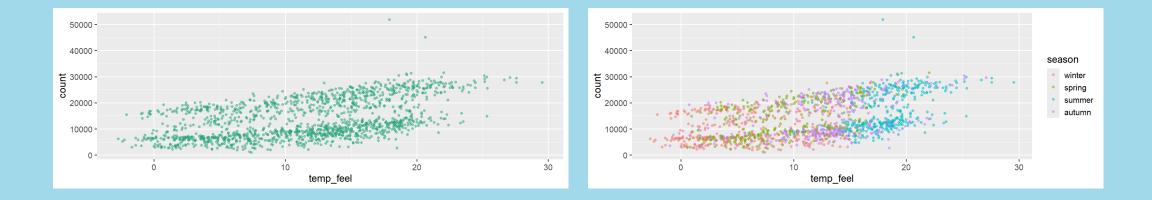
Geometries


= interpret aesthetics as graphical representations

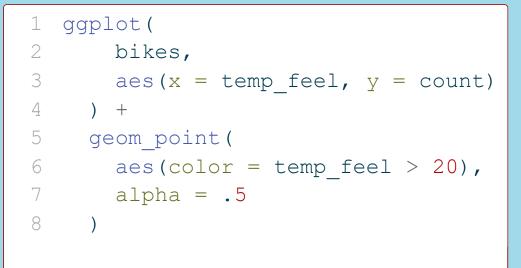
- points
- lines
- polygons
- text labels

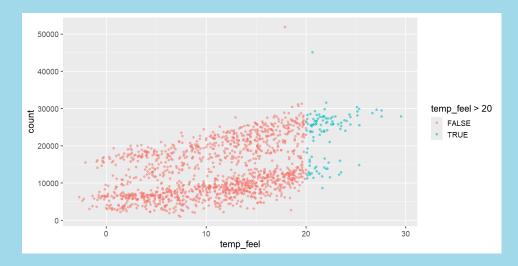

Geometries

```
1 ggplot(
2 bikes,
3 aes(x = temp_feel, y = count)
4 ) +
5 geom_point()
```

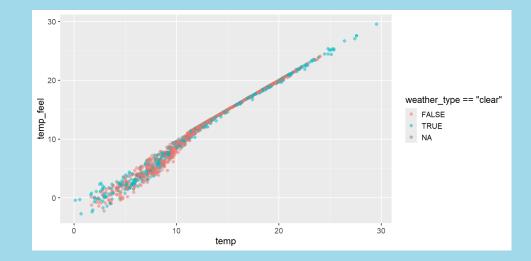


Visual Properties of Layers

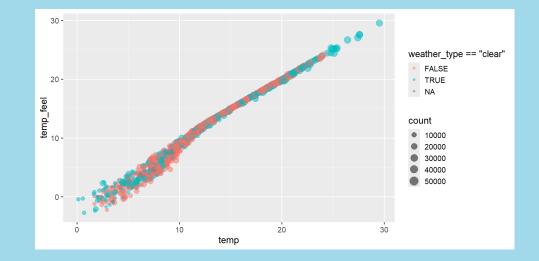
```
ggplot(
1
2
      bikes,
    aes(x = temp feel, y = count)
 3
     ) +
 4
 5
    geom point(
    color = "#28a87d",
 6
7
    alpha = .5,
8
    shape = "X",
 9
    stroke = 1,
   size = 4
10
11
     )
```



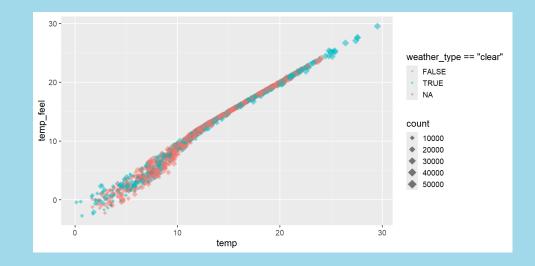

Setting vs Mapping of Visual Properties

```
1 ggplot(
2
   bikes,
3 aes(x = temp_feel, y = count)
 4 ) +
5 geom point(
6 color = "#28a87d",
7 alpha = .5
8)
9 ggplot(
   bikes,
10
11
  aes(x = temp feel, y = count)
12 ) +
13 geom_point(
14 aes(color = season),
15
  alpha = .5
16
```

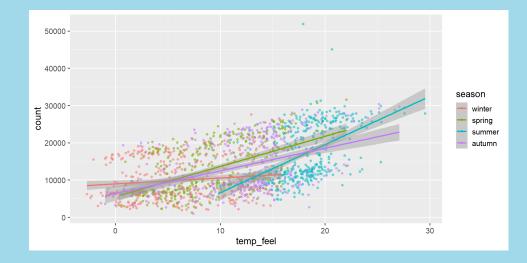


Mapping Expressions


Mapping Expressions

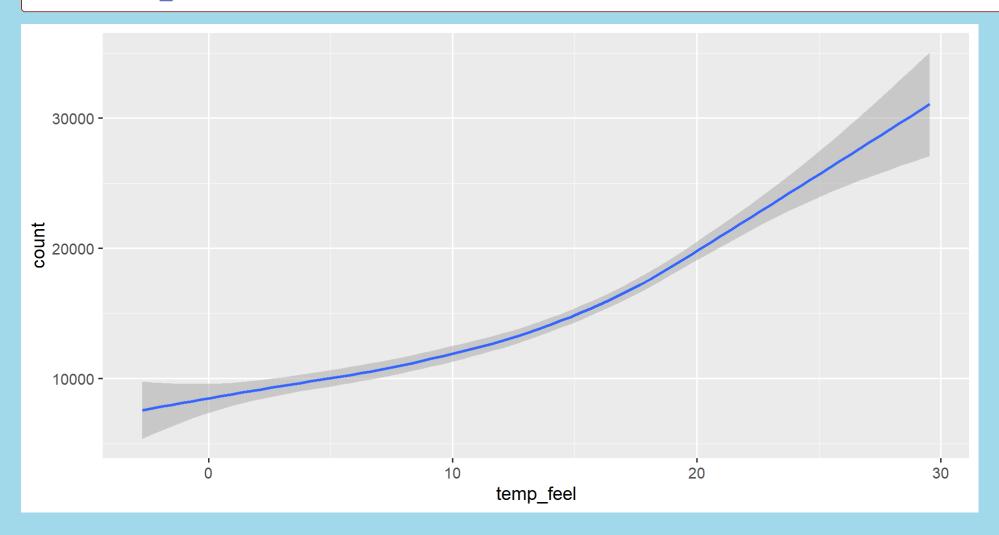
```
ggplot(
1
      bikes,
2
3
      aes(x = temp, y = temp feel)
4
    ) +
5
   geom point(
      aes(color = weather type == "d
6
7
   alpha = .5,
8
      size = 2
9
```



Mapping to Size

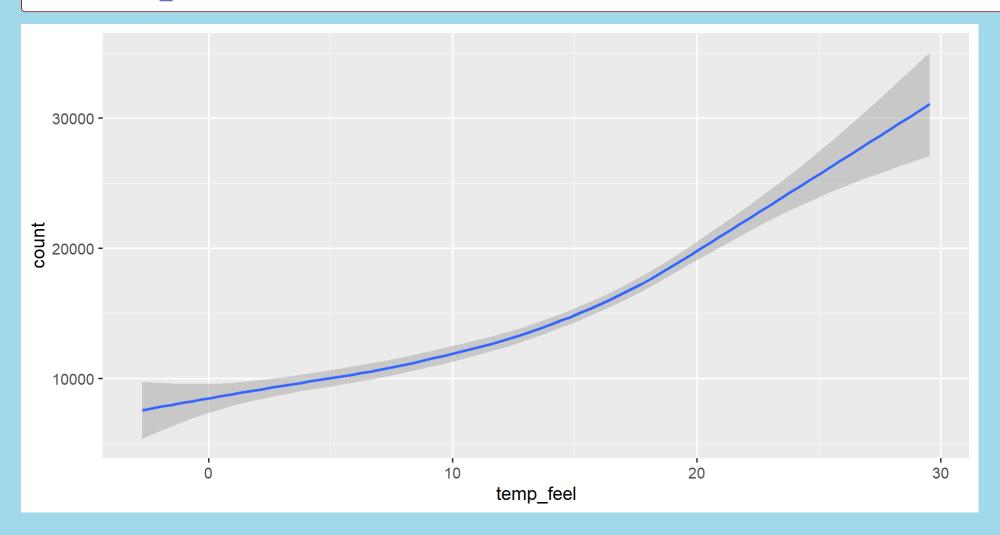
```
ggplot(
1
     bikes,
2
3
      aes(x = temp, y = temp feel)
4
    ) +
5
    geom point(
      aes(color = weather type == "d
6
           size = count),
7
8
      alpha = .5
9
```



Setting a Constant Property

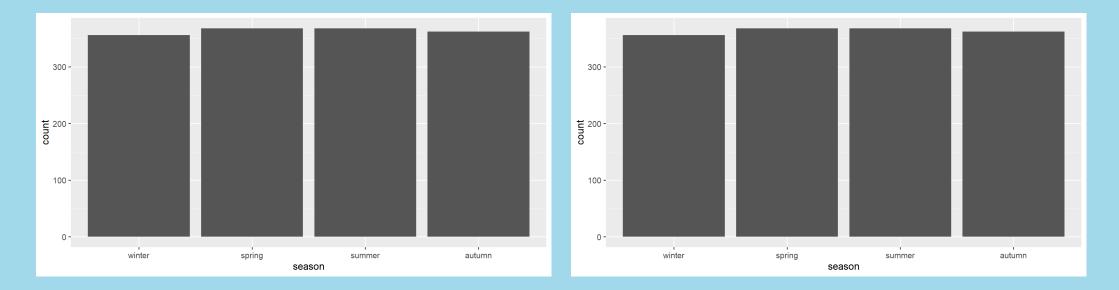
```
ggplot(
 1
 2
       bikes,
 3
       aes(x = temp, y = temp feel)
 4
     ) +
 5
    geom point(
       aes(color = weather type == "d
 6
 7
           size = count),
     shape = 18,
 8
     alpha = .5
 9
10
```



Adding More Layers

```
ggplot(
 1
      bikes,
 2
    aes(x = temp_feel, y = count,
 3
 4
          color = season)
 5
    ) +
 6
    geom point(
    alpha = .5
 7
 8
     ) +
     geom_smooth(
 9
    method = "lm"
10
11
     )
```

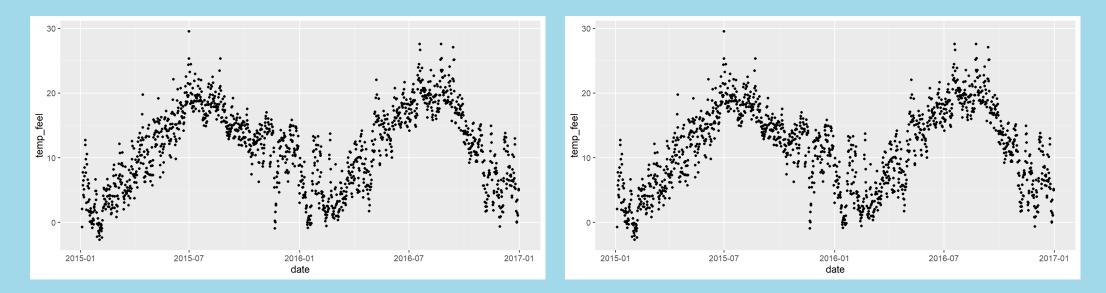


Statistical Layers


- 1 ggplot(bikes, aes(x = temp feel, y = count)) +
- 2 stat_smooth(geom = "smooth")

- 1 ggplot(bikes, aes(x = temp feel, y = count)) +
- 2 geom_smooth(stat = "smooth")

- 1 ggplot(bikes, aes(x = season)) +
- 2 stat count(geom = "bar")
- 3 ggplot(bikes, aes(x = season)) +
- 4 geom bar(stat = "count")




```
1 ggplot(bikes, aes(x = date, y = temp_feel)) +
```

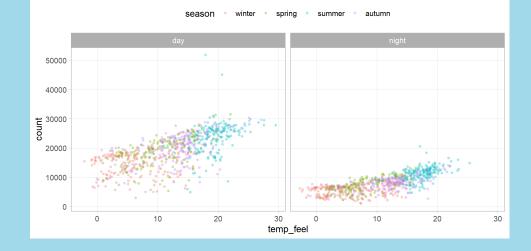
2 stat_identity(geom = "point")

```
3 ggplot(bikes, aes(x = date, y = temp_feel)) +
```

```
4 geom point(stat = "identity")
```


Facets

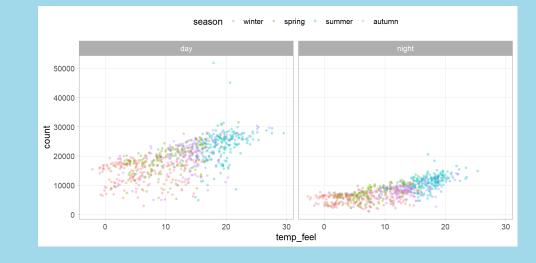
= split variables to multiple panels


Facets are also known as:

- small multiples
- trellis graphs
- lattice plots
- conditioning

facet_wrap()		facet_grid()		
Autumn	Spring	2015	2016	
Subset for Autumn	Subset for Spring	Subset for Day × 2015	Subset for Day × 2016	Day
Summer	Winter			
Subset for Summer	Subset for Winter	Subset for Night × 2015	Subset for Night × 2016	Night

Wrapped Facets


1 q <-2 ggplot(3 bikes, 4 aes(x = temp feel, y = count, 5 color = season) 6) + 7 geom point(8 alpha = .3,guide = "none" 9 10 11 g + 12 facet_wrap(13 vars(day night) 14)

Wrapped Facets

1 g +

- 2 facet_wrap(
- 3 ~ day_night
- 4)

= translate between variable ranges and property ranges

- feels-like temperature $\rightleftharpoons x$
- reported bike shares \rightleftharpoons y
- season \rightleftharpoons color
- year \rightleftharpoons shape

The **scale_*()** components control the properties of all the **aesthetic dimensions mapped to the data**.

Consequently, there are scale_*() functions for all aesthetics such as:

The **scale_*()** components control the properties of all the **aesthetic dimensions mapped to the data**.

The extensions (*) can be filled by e.g.:

- continuous(), discrete(), reverse(), log10(), sqrt(), date() for positions
- continuous(), discrete(), manual(), gradient(), gradient2(), brewer() for colors
- continuous(), discrete(), manual(), ordinal(), area(), date() for sizes
- continuous(), discrete(), manual(), ordinal() for shapes
- continuous(), discrete(), manual(), ordinal(), date() for transparency

Continuous vs. Discrete in {ggplot2}

Continuous: quantitative or numerical data

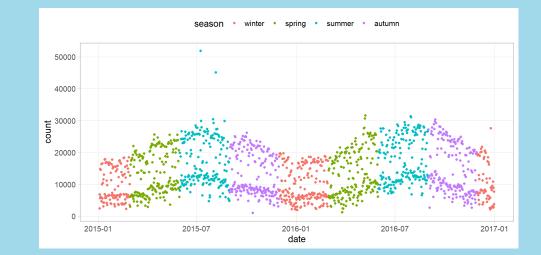
- height
- weight
- age
- counts

Discrete: qualitative or categorical data

- species
- sex
- study sites
- age group

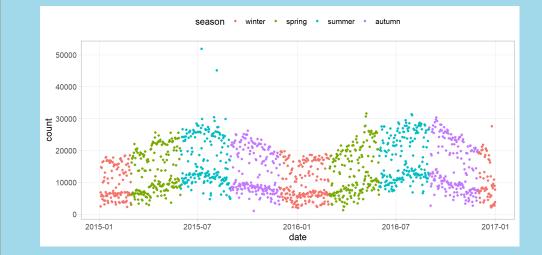
Continuous vs. Discrete in {ggplot2}

Continuous: quantitative or numerical data

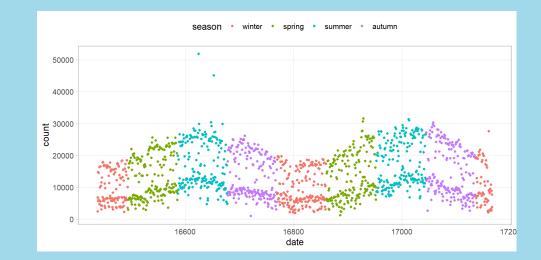

- height (continuous)
- weight (continuous)
- age (continuous or discrete)
- counts (discrete)

Discrete: qualitative or categorical data

- species (nominal)
- sex (nominal)
- study site (nominal or ordinal)
- age group (ordinal)


Aesthetics + Scales

```
1 ggplot(
2 bikes,
3 aes(x = date, y = count,
4 color = season)
5 ) +
6 geom_point()
```



Aesthetics + Scales

```
ggplot(
1
   bikes,
2
3
  aes(x = date, y = count,
4
        color = season)
5
   ) +
6
   geom point() +
7
   scale x date() +
8
   scale y continuous() +
   scale_color_discrete()
9
```



```
ggplot(
1
   bikes,
2
3
  aes(x = date, y = count,
4
        color = season)
5
   ) +
   geom_point() +
6
7
    scale x continuous() +
   scale_y_continuous() +
8
   scale_color_discrete()
9
```


Coordinate Systems

= interpret the position aesthetics

- **linear coordinate systems:** preserve the geometrical shapes
 - coord_cartesian()
 - coord_fixed()
 - coord_flip()
- **non-linear coordinate systems:** likely change the geometrical shapes
 - coord_polar()
 - coord_map() and coord_sf()
 - coord_trans()